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Part I 

56-DAY-TIME LINE STUDY 

I. 1 INTRODUCTION 

The 56-day mission has two primary objectives: (1) the intensive observation of the 

sun with a manned observatory i n  space, ATM; and (2) the measurement of the 

effects on men and vehicles of prolonged periods in space. A s  secondary objectives, 

the mission has  certain biological, astronomical, and geophysical experiments. 

Groundrules and assumptions are as follows: 

Launch of AAP-3 and U P - 4  is from Cape Kennedy in mid-1969 a t  an 

inclination angle of 28.5 deg. 

At the time of launch, the Cluster is a t  an altitude of 250 nm. 

The Cluster weight of AAP-2, AAP-3, and AAP-4 is constant a t  

105,000 lb; its area in  the line of flight is constant a t  2,700 sq f t .  

Days 1 - 6 inclusive a r e  reserved for  launch; days 55 and 56 are 
reserved for  reentry.  

Days 7, 14, 21, 28, 35, 42, and 49 are reserved for  r e s t  and recreation. 

Days 17, 26, 39, and 54 a r e  reserved for EVA. 

EVA is scheduled when the vehicle is over the U. S. , but not in the South 

Atlantic Anomaly. 

No experiments a r e  scheduled during reserved days. 

The command module, CM, is  occupied a t  all times, although the 

occupant can be asleep. 

No  more than one repetition of a particular experiment can be 

scheduled simultaneously. 

1-1 
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0 Each man has 12 to 12 .5  h r  p e r  day f o r  sleep, eating, hygiene, and 

personal duties; 2 to 4 manhours per  day are scheduled for  housekeeping. 

I. 2 TIMELINE TABLES 

Table 1-1 is the timeline for the first 6 days, including launch of AAP-3, launch of 

AAP-4, rendezvous of AAP-3 with AAP-4, rendezvous of AAP-3/-4 with the Cluster,  

AAP-2, and activation of the Cluster.  

inclusive, giving the day, the revolution within the day, and, where necessary,  the 

30 min period within the revolution during which each of the three crewmen is per- 

forming a particular activity. In Table 1-2, references are made to a typical RkR 
day (Table 1-4) and typical EVA day (Table 1-5). 
as Table 1-2. 

Like Table 1-1, it assigns each activity to all three crewmen and has the time in  

blocks. 

Table 1-2 is a timeline for  days 7 to 54 

These are in the same format 
Table 1-3 is the timeline fo r  days 55 and 56, reentry and recovery.  

The following is an explanation of the listing codes appearing in Tables I -2, 1-4, and 

1-5: 

ATM-A 

ATM-P 

CM 

DACT 

EHK 

EVA 

M18 

M 50 

M 5 1  

manned solar observatory experiments in  active mode (two men) 

manned solar observatory experiments in patrol mode (one man) 

activity specifically designed to ensure that the command module is 
occupied at all t imes 

deactivation of the Lunar Module - Telescope Module 

1-1/2 hr  period, scheduled once pe r  day per man, fo r  eating, hygiene, 

and personal housekeeping 

specific 3-hr period during which one crewman is outside the AM 
Vectorcardiogram Experiment - the dash numbers indicate the subject 
astronaut 

Metabolic Cost - with the second crewman as subject, performed during 
the first half of the mission 

Cardiovascular Function - the dash  numbers indicate the subject 

ED MI 

1-2 
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M52 

M 53 

M 57 

PREP 

POST 

RES 

R&R 

SEH 

s 1 9  

S363 

S6 9 

S70 

VHK 

Bone and Muscle Changes, and with it the Mass Measuring Device, 
M56, and Body Mass Measuring System, M58. Each man performs 

these experiments on himself. 

Human Vestibular Function - divided into three experiments A, By C 

performed on crewmen 3, 2, and 1, respectively. 

Total Body Exercise System - performed by each crewman on himself, 

three times during the mission. 

3-hr period during which two crewmen prepare in AM for  EVA 

1-1/2 h r  period after EVA during which two crewmen doff suits in AM 

approximately 1 manhr per  experiment day for  experiments involving 

photography and/or targets  

Specific time during R&R days reserved for  each crewman’s rest and 

recreation 

10-1/2 h r  period for each crewman each day, during which he has  8 hrs 
continuous sleep, two meals, and hygiene and personal housekeeping time 

UV Stellar Astronomy - performed throughout the whole mission 

U V  Airglow Horizon Photography 

X-ray Astronomy, formerly S17 
W X-ray Solar Astronomy, formerly S20 

Vehicle Housekeeping, with approximately 1 manhr per  day scheduled. 

1-3 
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Table 1-1 

LAUNCH AND ACTIVATION 

Time; Hours, Minutes Activity, Assigned to all 3.Men 
DAY 1 

1200 - 1210 

1210 - 1330 

1330 - 1350 

1350 - 1420 

1420 - 1600 

1600 - 1700 

1700 - 1800 

1800 - 2000 

2000 - 2400 

DAY 2 

0000 - 0600 

0600 - 0800 

0800 - 1100 

1100 - 1200 

1200 - 1300 

1300 - 1310 

Launch of AAP-3 from KSC complex 34, includes 

S-IVB, IU, SLA, CSM 

Insertion into elliptical orbit, start insertion checklist 

Verify orbit, finish checklist 

Jettison S-IVB, prepare for circularization 

Circularization at 110 nm, start vehicle systems 

checklist 

Verify orbit, mission lifetime, complete vehicle 

checklist and navigation checks 

AAP-4 launch preparations 

Eat,  hygiene 

First 4 hr  of 10-hr sleep - hygiene period 

Simultaneous sleep and hygiene 

Eat,  hygiene 

Review and preparation for  AAP-4 launch, in 

communications with KSC 

Eat, hygiene, housekeeping 

Immediate preparation for  AAP-4 launch 

Launch of AAP-4 f rom KSC complex 37, includes 

S-IVB, IU, SLA, LM, ATM 
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1310 - 1430 

’ 1430 

1515 

1600 

1630 

1700 - 1730 

1730 - 1900 

1900 - 2025 

2025 

2030 - 2130 

2130 - 2400 

DAY 3 

0000 - 0730 
0730 - 0830 
0830 - 1230 

1230 

1330 

1400 - 1500 

1500 - 1600 

1600 - 1900 

1900 - 2100 

2100 - 2400 

Insertion of AAP-4 into circular orbit, 160 nm 

CSM phase adjust (NC1) 

CSM height and plane adjust (NCC) 

CSM circularization (NSR) at 150 nm,below and 
behind AAP-4 

CSM TPI  

CSM braking, 160-nm circular orbit 

Dock CSM to AAP-4, remove probe and drogue, 

check hatches, pressurize LM 

CSM/ LM/ATM withdrawal f rom S-IVB of AAP-4, 

jettison S-IVB 

CSM/ LM/ATM phase maneuver, NCHl , HAW 

Eat,  hygiene 

First 2-1/2 h r  of 10-hr sleep-hygiene 

Balance of 10-hr sleep-hygiene period 

Ea t  , housekeeping 

Prepare  to renezvous with Cluster 

Height and plane adjust manuever 

LM/ATM/CSM coelliptic with Cluster 

Eat, hygiene 

TWO men enter LM/ATM 

LM/ATM checkout 

CSM/ LM/ATM system checkout 

First 3 hr  of 10-hr sleep-hygiene period 

1-5 
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DAY 4 

0000 - 0700 

0700 - 0800 

0800 - 1030 

1040 

1110 

1215 

1300 

1330 

1400 

1500 - 1800 

1800 - 1900 

1900 - 2000 

2000 - 2400 

DAY 5 

0000 - 0700 
0700 - 0800 

0800 - 1200 

1200 - 1300 

1300- 1800 

1800 - 2000 

2000 - 2400 

7 h r  of 10-hr sleep hygiene 

E at , housekeeping 

Prepare for  docking with Cluster 

LM/ATM/CSM correction (NCC) 

LM/ATM/ c SM coelliptic 

LM/ATM/CSM TPI 

LM/ATM/CSM braking 

LM/ATM docking, port 1 

CSM docking, port 5 

Activate MDA, deploy solar panels 

LM crew return to CSM 

Eat,  housekeeping 

First 3 h r  of 10-hr sleep-hygiene period 

7 remaining h r  of sleep-hygiene period 

Eat , housekeeping 

Two men activate Airlock Module 

E at 

P repa re  Cluster 

Eat , housekeeping 

First 4 h r  of 10-hr sleep-hygiene period 
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DAY 6 

0000 - 0600 

0600 - 0800 

0800 - 1200 

1200 - 1300 

1300 - 1800 

1800 - 1900 

1900 - 2400 

LMSC -A8423 18 

6 hr of 10-hr sleep-hygiene period 

Eat, housekeeping 

Prepare Cluster, including OWS 

Eat 

Prepare Cluster, including OWS 

Eat 

Final checkout, Experiment M439, prepare for 
phasing with experiment schedule, days 7 through 53 

I- 7 
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Table 1-2 

DAYS 7-54 INCLUSIVE 

DAY 7 

This day w a s  reserved f o r  rest and recrea t ion .  A typical R & R day is given in  

Table 1-4. 

DAY 8 

R e v  C r e w  1 C r e w 2  

1 SEH 

SEH 

SEH 

2 SEH 

SEH 

SEH 

3 SEH 

SEH 

SEH 
4 SEH 

SEH 

SEH 

5 SEH 

6 SEH 
7 SEH 

8 ATM-P 

VHK 

M18-2 
M18-3 

M5 1-3 

M51-3 

M52 

M53A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

C r e w  3 

M52 
M 18-2 

M18-3 

M51-3 

M51-3 

VHK 

M53A 

EHK 

EHK 

EHK 
M52 

ATM-P 
ATM-P 

SEH 

SEH 

1-8 

R e v  

9 

10 
11 

12 

13 

14 

15 

16 

C r e w  1 

ATM-P 

EHK 

M18-1 

M51-2 

M51-2 

M53B 

M53B 

VHK 

M52 

ATM-P 

ATM-P 

ATM-P 

ATM-A 

ATM-A 

C r e w  2 

SEH 

SEH 
M52 

M18-1 

M51-2 
M51-2 

M53B 

M53B 

EHK 

EHK 

EHK 

M52 

CM 

CM 
ATM-A 

ATM-A 
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DAY 9 

Rev C r e w  1 Crew 2 C r e w  3 R e v  C r e w  1 C r e w  2 C r e w  3 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 M52 

VHK 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 

SEH 

10 

11 

12  

ATM-P 

EHK 

M 52 

SEH 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

VHK 

M53C 

M53C 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

CM 

ATM-A 
ATM-A 

VHK 

13 

14  

M53C 

M53C 

CM 

CM 

15 

16  9 ATM-P 

DAY 10 

R e v  C r e w  1 C r e w  2 C r e w  3 R e v  Crew 1 Crew 2 C r e w  3 

1 SEH 

2 SEH 

3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

ATM-A 

ATM-A 

M57 

M57 

M53A 

SEH 

SEH 

SEH 

SEH 

SEH 

ATM-A 

ATM-A 

VHK 

ATM-P 

EHK 
s19 

SEH 

SEH 
519 

VHK 
M53B 

M53B 

EHK 
ATM-A 

ATM-A 

SEH 

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 
CM 

CM 

9 

10 

11 

12 

M53A 

EHK 

ATM -P 

ATM-P 

SEH 

SEH 

M53B 

M53B 

ATM-P 
ATM-A 

ATM-A 

13 

14 

15 

1 1-9 
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DAY 11 

Rev Crew 1 

1 SEH 

2 SEH 
3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 
8 ATM-P 

9 ATM-P 

10 EHK 

DAY 12 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 

6 S E H .  

7 SEH 

8 ATM-P 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 2 

ATM-A 

ATM-A 

M50 
M50 

M53A 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

M50 

M50 
M53A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

1-10 

Rev Crew 1 

11 VHK 

M53C 

12 M53C 

M51-1 

M51-1 

13 ATM-P 

14 ATM-A 

15 ATM-A 

Rev 

9 

10 

11 

12 

13 
14 
15 

16 

Crew 1 

ATM-P 

EHK 

s19 

VHK 

M53B 

M53B 

ATM-P 
ATM-A 

ATM-A 

SEH 

Crew 2 

VHK 
M53C 

M53C 

M51-1 

M51-1 

EHK 

ATM-A 

ATM-A 

Crew 2 

SEH 

SEH 

s19 

M53B 

M53B 

EHK 
ATM-A 

ATM-A 

ATM-A 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 
CM 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
CM 

CM 

ATM-A 
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DAY 13 

Rev Crew 1 Crew 2 C r e w 3  

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

ATM-P 

ATM-P 

EHK 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 

Rev 

10 

11 

12 

13 

14 
15 

16 

Crew 1 

M50 

M50 
VHK 

M53C 

M53C 

ATM-P 

ATM-A 

ATM-A 

CM 

CM 

LMSC -A842318 

Crew 2 

M50 

M50 

VHK 

M53C 

M53C 

EHK 

ATM-A 

ATM-A 
ATM-A 

ATM-A 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

ATM-A 

ATM-A 

DAY 14 

This day was reserved for rest and recreation. A typical R & R day is given in 

Table 1-4. 

DAY 15 

Rev Crew 1 Crew 2 

1 SEH 

SEH 

SEH 

2 SEH 

3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

M18-2 

M18-3 

VHK 

s19  

M51-3 

M51-3 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 3 

M18-2 

M18-3 

s19 

VHK 

M51-3 

M51-3 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

Rev 

9 

10 

11 

12 

13 

14 
15 

16 

1-11 

Crew 1 

ATM-P 

EHK 

M50 

M50 

M18-1 

M51-2 

M51-2 

ATM-P 

ATM-A 

ATM -A 

SEH 

Crew 2 

SEH 

SEH 
M 50 

M50 

M18-1 

M51-2 

M51-2 

EHK 

ATM-A 

ATM -A 

ATM-A 

LOCKHEED MISSILES & SPACE COMPANY 

~~ 

Crew 3 

SE H 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

ATM-A 
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DAY 16 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 ATM-P 

8 ATM-P 

Crew 2 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SE H 

Rev 

9 

10 
11 

12 

13 

14 

15 

16 

Crew 1 

EHK 

S19 

VHK 

ATM-P 

ATM-A 

ATM-A 

CM 

CM 

Crew 2 

SEH 

S19 

EHK 

ATM-A 
ATM-A 

ATM-A 

ATM-A 

DAY 17 

This day was reserved for EVA. A typical EVA day is given in Table 1-5. 

DAY 18 

Rev Crew 1 Crew 2 
1 SEH VHK 

SEH 

SEH 
2 SEH M 52 

SEH 

SEH s19  

3 SEH s 1 9  

SEH s19  

SEH 

4 SEH SEH 

SEH SEH 

SEH SEH 

5 SEH SEH 
6 SEH SEH 

7 SEH SEH 

8 ATM-P SEH 

Crew 3 

M52 

M57 
M57 

VHK 

S19 

s19 

S19 

EHK 

EHK 

EHK 

M52 

ATM -P 

ATM-P 

SEH 

SEH 

Rev 

9 

10 

11 

12 

13 

14 

15 

16 

Crew 1 

ATM-P 

EHK 

M50 

M50 

M51-1 

M51-1 

M52 

ATM-P 

ATM-P 

ATM-P 
ATM-A 

ATM-A 

Crew 2 

SEH 

SEH 

M52 
M 50 
M50 

M51-1 

M51-1 

1-12 

LOCKHEED MISSILES 81 SPACE COMPANY 

~ 

EHK 

EHK 

EHK 

M52 

CM 

CM 
ATM-A 

ATM-A 

Crew 3 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

ATM-A 

ATM-A 

Crew 3 

SEH 

SEH 

SEH 
SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

M 52 

VHK 

CM 

CM 



DAY 19 

Rev Crew 1 

1 SEH 
2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 
10 M52 

EHK 

EHK 

DAY 20 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 

Crew 2 

ATM-A 
ATM-A 

ATM -A 

SEH 

SE H 

SEH 

SEH 

SEH 

SEH 

SEH 
SEH 

SEH 

Crew 2 

ATM-A 

ATM -A 

ATM-A 

SEH 
SEH 

SE H 

SEH 

SEH 

SEH 

Crew 3 

ATM-A 
ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 
SEH 

SEH 

Crew 3 

ATM -A 

ATM -A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

Rev Crew 1 

11 EHK 

M50 

M50 
12 

13 M52 

VHK 

14 ATM-P 

15 ATM-A 

16 ATM-A 

Rev 

10 

11 

12 

13 

14 

15 
16 

Crew 1 

EHK 
ATM-A 

ATM-A 

ATM-A 

ATM -A 

ATM-P 
VHK 

M50 

M50 

LMSC-A842318 

Crew 2 

VHK 
M50 

M50 

EHK 

EHK 

EHK 

VHK 

ATM -A 

ATM-A 

Crew 2 

SEH 
ATM-A 

ATM-A 

ATM-A 

ATM-A 

EHK 

M50 

M 50 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

CM 

Crew 3 

SEH 

SEH 

SEH 

SEH 

CM 

CM 
CM 

CM 

CM 

DAY 21 

This day was reserved for rest and recreation. A typical R & R day is given in 

Table 2-4. 

1-13 

LOCKHEED MISSILES & SPACE COMPANY 
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DAY 22 

Rev Crew 1 

1 SEH 

SEH 

SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 
8 ATM-P 

9 ATM-P 

DAY 23 

Rev Crew 1 

1 SEH 
2 SEH 

3 SEH 

4 SEH 

5 SEH 

SEH 

SEH 
6 SEH 

7 SEH 
8 ATM-P 

Crew 2 

VHK 
M18-2 

M52 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 
SEH 

SEH 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 
SEH 

SEH 

SEH 
SEH 

SEH 

SEH 

Crew 3 

M52 
M18-2 

VHK 

EHK 

ATM -P 
ATM-P 

SEH 

SEH 

SEH 

Crew 3 

ATM-A 
ATM-A 

ATM-A 

EHK 
M 52 

VHK 

SEH 

SEH 

1-14 

Rev Crew 1 

10 EHK 
11 M50 

M50 

M52. 

12 M18-1 

M51-1 

M51-1 

13 ATM-P 

14 ATM-A 

15 ATM-A 

Rev 

9 

10 

11 

12 

13 
14  

15 

Crew 1 

ATM-P 
EHK 

M52 

VHK 

ATM-P 

ATM-P 

ATM -A 

ATM-A 

Crew 2 

SEH 
M50 

M50 

VHK 

M18-1 

M51-1 

M51-1 

EHK 

ATM-A 

ATM -A 

Crew 2 

SEH 

SEH 

M 52 

VHK 

LOCKHEEO MISSILES & SPACE COMPANY 

~~ 

EHK 
ATM -A 

ATM-A 

Crew 3 

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
CM 

CM 

Crew 3 

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
CM 

CM 



LMSC-A842318 

DAY 24 

Rev Crew 1 Crew 2 Crew 3 Rev Crew 1 Crew 2 Crew 3 

ATM-A 

ATM-A 

M18-3 

M51-3 

M51-3 

EHK 

M52 

VHK 

1 SEH 

2 SEH 
3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 

SEH 

SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 

ATM-A 

ATM-A 

M18-3 

M51-3 

M51-3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

EHK 

M50 

M50 

M18-1 

VHK 

M51-2 

M51-2 

M 52 

M57 

M 57 

ATM -A 

ATM-A 

SEH 

SEH 

M50 

M50 
M18-1 

M52 

M51-2 

M51-2 

EHK 

EHK 

EHK 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SE H 

SEH 

SEH 

CM 

CM 

ATM-A 

10 

11 

12 

13 

SEH 

SEH 

SE H 

14 

15 

16 

DAY 25 

Rev Crew 1 Crew 2 Crew 3 Rev Crew 1 Crew 2 Crew 3 

ATM -A 

ATM -A 

EHK 

M 52 

VHK 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

ATM-P 

ATM-P 

FHK 

M 50 

M 50 

M18-2 

ATM-A 

ATM -A 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

M50 

M50 
M18-2 

11 VHK 

M51-1 

M51-1 

12 M52 

M52 

M51-1 

M51-1 

EHK 

EHK 

EHK 

ATM-A 

ATM-A 

ATM-A 

ATM-A 

SEH 
SEH 

SEH 

SE H 

SEH 

SEH 

CM 

CM 
ATM-A 

ATM-A 

VHK 
13 ATM-A 

14 ATM-A 

15 CM 

16 CM 

SE H 

SEH 

SEH 

SE H 

SEH 

SEH 

SEH 
1-15 

LOCKHEED MISSILES & SPACE COMPANY 



DAY 26 

This day was reserved for EVA. A typical EVA day is given in Table 1-5. 

DAY 27 

Rev Crew 1 

1 SEH 

SEH 

SEH 
2 SEH 

SEH 

SEH 

3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 

6 SEH 

Crew 2 

M50 
M50 

M52 

VHK 
M18-3 

M51-3 

M51-3 

M51-2 
M51-2 

SEH 

SEH 

SEH 

Crew 3 

M50 
M50 

VHK 

M52 
M18-3 

M51-3 

M51-3 

M51-2 

M51-2 

EHK 

ATM-P 

ATM-P 

Rev 

7 
8 

9 

10 
11 

12 

13 

14 

15 

Crew 1 

SEH 
ATM-P 

ATM-P 

EHK 

ATM-A 

ATM-A 

ATM-A 

ATM -A 

M52 

VHK 

Crew 2 

SEH 

SEH 

SEH 

SEH 
ATM-A 

ATM-A 

ATM-A 

ATM -A 

EHK 

EHK 

EHK 

Crew 3 

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

CM 

CM 

DAY 28 

This day was reserved for rest and recreation. A typical R & R day is given in 

Table 1-4. 

1-16 

LOCKHEED MISSILES & SPACE COMPANY 

~ 

, 
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8 
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8 
I 
1 
1 
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I 
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DAY 29 

Rev Crew 1 

1 SEH 

SEH 

SEH 

2 SEH 

SEH 

SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

DAY 30 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 

10 EHK 
1 1  ATM-P 

Crew 2 

M52 

M18-3 

S69 
ATM-P 

ATM-P 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 
SEH 

SEH 

SEH 

VH K 

Crew 3 

S63 

M 18-3 

S69 

M52 

VHK 

EHK 

RES 

ATM-P 

ATM-P 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SEH 

SEH 

Rev 

9 

10 

11 

12 

13 

14 

15 

Crew 1 

ATM -P 

EHK 

M52 

VHK' 

VHK 

RES 

M51-1 

M51-1 

M18-1 

CM 

Rev Crew 1 

12 ATM-P 

ATM -P 

ATM-P 

13 RES 

RES 

M18-2 

14 M52 

CM 

CM 

15 CM 

CM 
CM 

LMSC-A842318 

Crew 2 

SEH 

SEH 

ATM-P 

ATM-P 

ATM -P 

ATM-P 

EHK 

M51-1 

M51-1 

M18-1 

ATM -A 

Crew 2 

M52 

VHK 

EHK 

EHK 

EHK 

M18-2 

S69 
M51-2 

M51-2 

M51-3 
M.51-3 

S69 

1-17 

LOCKHEED MISSILES & SPACE COMPANY 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

CM 

CM 

ATM-A 

Crew 3 

SE H 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 

M51-2 

M51-2 

M51-3 
MFil-3 

M52 
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DAY 31 

Rev Crew 1 

1 SEH 

SEH 

SEH 
2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

DAY 32 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 
9 ATM-P 

10  EHK 

Crew 2 

M52 

RES 
S69 
VHK 

SEH 

SEH 

SEH 

SEH 

SEH 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 
SEH 

SEH 

Crew 3 

RES 
M52 

S69 
ATM-P 

ATM-P 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

ATM -A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 
SEH 

SEH 

Rev Crew 1 

9 ATM-P 

10 EHK 

11 M52 

VHIC 

12 

13 ATM-P 

14 ATM-P 

15 CM 

Rev Crew 1 

11 ATM-P 

12 ATM-P 

13 S19 

14 M52 
M51-1 

M51-1 

15 M18-1 

S69 

563 

Crew 2 

SEH 

SEH 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

VHK 

ATM-A 

Crew 2 

VHK 

EHK 

s19  

S69 
M51-1 

M51-1 

M18-1 

M52 
CM 

1-18 

LOCKHEED MISSILES & SPACE COMPANY 

~~ 

Crew 3 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

CM 
ATM -A 

Crew 3 

SEH 
SEH 

SEH 

CM 

CM 

CM 

CM 

CM 
M 52 

1 
I 
8 
8 
8 
8 
8 
8 
I 
1 
8 
8 
8 
1 
1 
1 
I 
I 



DAY 33 

Rev  C r e w  1 C r e w  2 

1 SEH 

SE H 

SE H 

2 SEH 

SE H 

SE H 

3 SEH 

SEH 

SEH 

4 SEH 

5 SEH 
6 SEH 

7 SEH 

M52 

S6 9 
M51-2 

M51-2 

M51-3 

M51-3 

M18-3 

S6 9 

S6 3 

SEH 

SE H 

SE H 

SE H 

C r e w  3 

RES 

S69 

M51-2 

M51-2 

M51-3 

M51-3 

M18-3 

S69 

M52 

EHK 

ATM-P 

ATM-P 

SE H 

Rev 

8 

9 

1 0  

11 

1 2  

13 

1 4  

15 

C r e w  1 

ATM-P 

ATM-P 

E HK 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

M52 

RES 

M18-2 

s19 
CM 

LMSC-A8423 18 

Crew 2 

SEH 

SEH 

SEH 

VHK 

VHK 

EHK 

E HK 

EHK 

M18-2 

s19 
ATM-A 

C r e w  3 

SEH 

SE H 

SEH 

SE H 

SEH 

SE H 

SE H 

SEH 

SE H 

SEH 

CM 
ATM-A 

DAY 34 

Rev C r e w  1 Crew 2 Crew 3 Rev Crew 1 Crew 2 Crew 3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
SE H 

ATM-P 

ATM-P 

EHK 

ATM-A 

ATM-A 

ATM-A 

SE H 

SEH 

SE H 

SEH 

SEH 

SEH 

SE H 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SEH 

SE H 

11 M52 

VHK 

1 2  

13 ATM-I-’ 

14 ATM-P 

ATRI-P 

ATM-P 

15 CM 

CM 

CM 
1-19 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

M52 

VHK 

S6 9 

S6 9 

LOCKHEED MISSILES 8t SPACE COMPANY 

SEH 

SE H 

SEH 
SEH 

SE H 

CM 

CM 

CM 

VHK 

RES 

M52 
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DAY 35 

This  day was reserved for  rest and recreation. A typical R & R day is given in 
Table 1-4. 

DAY 36 

Rev Crew 1 

1 SEH 

SEH 

SEH 
2 SEH 

SEH 

SEH 
3 SEH 

SE H 

SEH 

4 SEH 

5 SEH 

G SEH 
7 SEH 

DAY 37 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 
6 SEH 

7 SEH 

8 ATM-P 
9 ATM-P 

10 EHK 

Crew 2 

M52 

S63 
M51-2 

M51-2 

M51-3 

M51-3 
M 18- 2 

RES 

S6 9 

SEH 

SEH 

SE H 

SE H 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SE H 

SE H 

SEH 

SEH 
SEH 
SEH 

Crew 3 

RES 

M52 
M51-2 

M51-2 

M51-3 
M51-3 

M18-2 

VHK 

S69 

EHK 

ATM-P 

ATM-P 
SE H 

Crew 3 

ATM-A 

ATM-A 

ATM-A 

EHK 
ATM-P 
ATM-P 

SE H 

SEH 
SE H 

SEH 

Rev Crew 1 Crew 2 Crew 3 

8 

9 
10  
11 

1 2  

13 

14 

15 

ATM-P 

ATM-P 

E HK 

M52 

M 57 
M57 

VHK 

RES 

M51-1 

M51-1 

M18-1 

CM 

Rev Crew 1 

11 M52 

VHK 

1 2  VHK 

13 ATM-P 
14 ATM-P 

ATM-P 

ATM-P 

15 CM 
CM 

CM 

SEH 

SEH 
SE H 

ATM-P 

ATM-P 
ATM-P 

ATM-P 

EHK 

M51-1 

M51-1 

M18-1 

ATM-A 

Crew 2 

ATM-P 

ATM-P 

ATM-P 
ATM-P 

EHK 
S69 

M57 

M57 
M18-3 

M52 

S69 

1-20 

LOCKHEED MISSILES & SPACE COMPANY 

~ ~ 

SEH 

SEH 
SEH 

SEH 

SEH 
SEH 

SEH 

SEH 

CM 

CM 

CM 

ATM-A 

Crew 

SEH 

SE H 

SEH 

SEH 

SEH 
CM 

CM 

CM 
M18- 

S6 9 

M52 

3 

-3 

8 
I 
I 
8 
1 
8 
1 
8 
8 
I 
8 
8 
8 
I 
1 
1 
I 
1 
1 
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DAY 38 

Rev 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

C r e w  1 

SEH 
SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

ATM-P 

ATM-P 

EHK 

C r e w  2 

ATM-P 

ATM-P 

RES 

SEH 

SE H 

SEH 

SE H 

SEH 

SEH 

SEH 

C r e w  3 

VHK 

E HK 

ATM-P 

ATM-P 

SE H 

SE H 

SEH 

SE H 

Rev C r e w  1 

11 M52 

VHK 

1 2  

13 RES 
14 M18-2 

M51-1 

M51-1 

15 CM 

CM 

CM 

LMSC -A842318 

Crew 2 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 
M18-2 

M51-1 

M51-1 

M52 

S69 

S63 

DAY 39 

T h i s  day  w a s  reserved f o r  EVA. A typical EVA day is given i n  Table  1-5. 

DAY 40 

Rev 

1 

2 

3 

4 

5 

6 

7 

C r e w  1 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SE H 

SEH 

SEH 

SEH 

SEH 

SEH 

C r e w  2 

M52 

S6 9 

M51-2 

M51-2 

M51-3 

M51-3 

M18-3 

S6 9 

RES 

SEH 

SE H 

SE H 

SE H 

C r e w  3 

RES 

S69 

M51-2 

M51-2 

M51-3 

M51-3 

M18-3 

S69 

M52 

EHK 

ATM-P 

ATM-P 

SE H 

C r e w  3 

SEH 
SEH 

SEH 

SEH 

SE H 

CM 

CM 

CM 

M57 

M 57 

M52 

Rev  C r e w  1 Crew 2 C r e w 3  

8 

9 

10 

11 

1 2  

13 

14 

15 

ATM-P 

ATM-P 

EHK 
M52 

VHK 

VHK 

RES 

M18-1 

VHK 

CM 

SEH 

SEH 

SE H 

ATM-P 

ATM-P 

ATM-P 
ATM-P 

EHK 

M18-1 

S69 

S63 

ATM-A 

1-21 

LOCKHEED MISSILES & SPACE COMPANY 

SEH 

SEH 

SE H 

SEH 

SEH 

SEH 
SEH 

SEH 

CM 

CM 

CM 

ATM-A 
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DAY 41 

Rev Crew 1 Crew 2 Crew 3 Rev C r e w 1  Crew 2 C r e w 3  

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
ATM-P 

ATM-P 

EHK 

ATM-A 

ATM-A 

ATM-A 

SE H 

SEH 

SE H 

SE H 

SE H 

SE H 

SE H 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 
SE H 

SE H 

SEH 

11 M52 

VHK 

VHK 
1 2  

13 ATM-P 

14 ATM-P 

ATM-P 
ATM-P 

15 M18-2 

M51-1 

M51-1 

ATM-P SEH 

ATM-P SEH 

ATM-P SEH 

ATM-P SEH 

EHK SE H 

M52 CM 

CM M52 
CM VHK 

M18-2 CM 

M51-1 CM 

M51-1 CM 
I 

DAY 42 

This  day was reserved fo r  rest and recreation. A typical R 8.1 -R day is given in  
Table 1-4. 

DAY 43 

Rev Crew 1 

1 SEH 
SEH 

SEH 

2 SEH 

SEH 

SE H 

3 SEH 

SEH 
SEH 

4 SEH 

5 SEH 
6 SEH 

7 SEH 

8 ATM-P 

Crew 2 

M 5 2  
S6 9 

M51-2 

M51-2 
M51-3  

M51-3  

M18-3  

S6 9 
RES 

SE H 

-SE H 

SE H 

SE H 

SEH 

Crew 3 

RES 
S69 

M51-2 

M51-2 
M51-3 

M51-3 

M18-3 
S69 

M52 

E HK 

ATM-P 

ATM-P 
SEH 

SEH 

Rev 
9 

10  

11 

1 2  

13 

14 

15 

Crew 1 

ATM-P 

EHK 

ATM-P 

ATM-P 
ATM-P 

ATM-P 
M52 

M18-1 
s19 

s19 

s19 

VHK 
CM 

Crew 2 

SEH 

SEH 

VHK 

VHK 
EHK 

EHK 

EHK 

M18-1 
s19  

s19 

s19  

S6 9 

ATM-A 

Crew 3 

SEH 

SEH 

SE H 

SEH 
SEH 

SE H 

SE H 

SE H 

SEH 

CM 

CM 

CM 
ATM-A 
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DAY 44 

Rev Crew 1 Crew 2 Crew 3 

1 SEH ATM-A ATM-A 

2 SEH ATM-A ATM-A 
I 
8 3 SEH ATM-A ATM-A 

4 SEH SE H E HK 

5 SEH SEH ATM-P I 6 SEH SE H ATM-P 

, B  7 SEH SEH SEH 

8 ATM-P SEH SEH 

9 ATM-P SEH SEH 

10 EHK SEH SEH 

~ 

8 

DAY 45 

Rev Crew 1 Crew 2 Crew 3 

1 SEH M 52 RES 

SEH RES M5 2 
1 
B SEH S6 9 S69 
- 

2 SEH ATM-P VHK 

1 3 SEH ATM-P 

4 SEH SEH EHK 

5 SEH SEH ATM-P 

6 SEH SEH ATM-P 

7 SEH SEH SEH 8 8 ATM-P SEH SE H 

1 

Rev Crew 1 

11 M52 

VHK 

VHK 

1 2  
13 ATM-P 

14 ATM-P 

ATM-P 

ATM-P 

15 S63 

M51-1 

M51-1 

Rev 

9 

10 
11 

1 2  

13 

14 

15 

Crew 1 

ATM-P 

EHK 
M52 

V HK 

ATM-P 

ATM-P 

CM 

LMSC-A842318 

Crew 2 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

M52 

CM 

CM 

VHK 

M51-1 

M51-1 

Crew 2 

SEH 

SEH 

ATM-P 

ATM-P 
ATM-P 

ATM-P 

EHK 

VHK 
ATM-A 

Crew 3 

SEH 

SE H 

SEH 

SEH 

SEH 

CM 

M52 

S69 
CM 

CM 

CM 

Crew 3 

SEH 

SEH 
SE H 

SEH 
SEH 

SEH 

SE H 

CM 
ATM-A 
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DAY 46 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 

10 EHK 

DAY 47 

Rev Crew 1 

1 SEH 

SEH 

SEH 

2 SEH 

3 SEH 

4 SEH 
5 SEH 

6 SEH 

7 SEH 

8 ATM-P 
9 ATM-P 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 

SE H 

SEH 

Crew 2 

M52 

S6 3 

S6 9 

ATM-P 

ATM-P 

SEH 
SE H 

SEH 

SE H 

SEH 
SEH 

Crew 3 

ATM-A 

ATM-A 
ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SE H 

SEH 

SE H 

Crew 3 

RES 

M52 

S69 

VHK 

EHK 
ATM-P 

ATM-P 

SEH 

SEH 

SEH 

Rev Crew 1 

11 M52 

VHK 

12 VHK 

13 RES 

14  CM 

CM 

CM 

15 CM 

CM 

CM 

Rev Crew 1 

10 EHK 

11 ATM-P 

1 2  ATM-P 

13 M51-1 

M51-1 

s19 
14  S19 

s19 

M52 

15 CM 

. 
LMSC -A8423 18 * 

Crew 2 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

M52 

M51-2 

M51-2 

M51-3 

M51-3 

S69 

Crew 2 
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SE H 

VHK 
EHK 

M51-1 

M51-1 

s19  
s19 

s19  

S69 
ATM -A 

Crew 3 

SE H 

SEH 

SE H 

SEH 

SE H 

RES 

M51-2 

M51-2 

M51-3 

M51-3 
M52 

Crew 3 

SEH 

SE H 

SEH 

SEH 

SEH 

SEH 
CM 

CM 

CM 
ATM-A 



DAY 48 

Rev Crew 1 

1 SEH 
2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 
9 ATM-P 

10 EHK 

Crew 2 

ATM-A 
ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SEH 
SE H 

SE H 

Crew 3 

ATM-A 
ATM-A 

ATM-A 

EHK 
ATM-P 

ATM-P 

SEH 

SEH 
SEH 

SEH 

Rev Crew 1 

11 M52 

VHK 

1 2  VHK 
13 ATM-P 

1 4  ATM-P 

ATM-P 

ATM-P 

15 CM 

CM 

CM 

LMSC-A842318 

Crew 2 

ATM-P 
ATM-P 

ATM-P 

ATM-P 

EHK 

M52 

CM 

CM 
M51-3 

M51-3 

M53A 

Crew 3 

SEH 
SEH 

SEH 

SE H 
SEH 

CM 

M52 

VHK 
M51-3 

M51-3 

M53A 

DAY 49 

This day was reserved for rest and recreation. A typical R & R day is given i n  

Table 1-4 . 

DAY 50 

Rev Crew 1 

1 SEH 

SEH 

SEH 

2 SEH 

SEH 
SE H 

3 SEH 

SEH 

SEH 
4 SEH 

5 SEH 

6 SEH 
7 SEH 

Crew 2 

M52 

RES 
M51-2 

M51-2 

M53B 

M53B 

S6 9 

RES 

S6 9 

SEH 

SEH 

SEH 
SEH 

Crew 3 

RES 

M52 
M51-2 

M51-2 

M53B 
M53B 

S69 

VHK 

S69 

EHK 

ATM-P 

ATM-P 
SEH 

Rev 

a 
9 

10 

11 

1 2  

13 

14  

15 

Crew 1 

ATM-P 

ATM-P 

E HK 

M52 
M51-1 
M51-1 

ATM-P 

ATM-P 

M53C 
M53C 

VHK 

CM 

Crew 2 

SE H 

SEH 
SE H 

RES 

M51-1 

M51-1 

VHK 

EHK 

M53C 
M53C 

S6 9 

ATM-A 
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Crew 3 

SEH 

SEH 

SEH 

SEH 

SE H 
SEH 

SEH 

SEH 

CM 

CM 

CM 

ATM-A 
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DAY 51 

Rev C r e w  1 

1 SEH 

2 SEH 

3 SEH 
4 SEH 

5 SEH 

6 SEH 
7 SEH 

8 ATM-P 

9 ATM-P 

1 0  EHK 

DAY 5 2  

Rev C r e w  1 

1 SEH 

SEH 

SEH 
2 SEH 

SEH 

SE H 

3 SEH 

4 SEH 

5 SEH 

6 SEH 
7 SEH 

8 ATM-P 

C r e w  2 

ATM-A 

ATM-A 

ATM-A 
SEH 

SEH 

SEH 
SEH 

SEH 

SEH 

SE H 

C r e w  2 

M52 

RES 

M 53B 

M53B 

S6 9 

RES 

s19 

SEH 
SEH 

SEH 
SEH 
SEH 

C r e w  3 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SE H 

SEH 

SEH 

C r e w  3 

RES 

M52 

M53B 

M53B 

S69 
VHK 
s19 

EHK 
ATM-P 

ATM-P 

SEH 

SEH 

1-26 

ILES & 

~ 

Rev  C r e w  1 

11 M52 

VHK 

VHK 
1 2  

13 ATM-P 

1 4  ATM-P 

ATM-P 

ATM-P 

15 CM 

CM 

CM 

Rev 

9 

10 

11 

1 2  

13 

14 

15 

SPACE 

__ 

C r e w  1 

ATM-P 

EHK 

M52 
VHK 

RES 

M53C 

M 53C 

VHK 
CM 

C r e w  2 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

M5 2 

CM 

CM 

M51-3 

M51-3 

M53A 

C r e w  2 

SEH 

SEH 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

EHK 

M53C 

M53C 

S69 
ATM-A 

COMPANY 

~~ 

C r e w  3 

SEH 

SE H 
SEH 
SE H 

SE H 

CM 
M52 

VHK 

M51-3 

M51-3 
M 53A 

C r e w  3 

SEH 

SEH 

SEH 
SE H 

SEH 

SEH 

SEH 

CM 

CM 

CM 

ATM-A 

r 
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DAY 53 

Rev Crew 1 

1 SEH 

2 SEH 

3 SEH 

4 SEH 

5 SEH 

6 SEH 

7 SEH 

8 ATM-P 

9 ATM-P 

10 EHK 

Crew 2 

ATM-A 

ATM-A 

ATM-A 

SEH 

SEH 

SEH 

SEH 

SE H 

SEH 

SEH 

Crew 3 

ATM-A 

ATM-A 

ATM-A 

EHK 

ATM-P 

ATM-P 

SEH 

SEH 

SE H 

SEH 

Rev Crew 1 

11 M52 

M57 

M57 

12  VHK 

13 RES 

14 CM 

CM 

CM 
15 CM 

CM 

CM 

LMSC-A842318 

Crew 2 

ATM-P 

ATM-P 

ATM-P 

ATM-P 

E HK 

M53A 

M57 

M57 

M52 

M51-2 

M51-2 

Crew 3 

SEH 

SE H 

SEH 

SEH 

SEH 

M53A 

M52 

M 57* 

M57 

M51-2 

M51-2 

*As M57 is 45 min long, it could be scheduled this way. 

The following period, between days 53 and 54, was reserved fo r  scheduling the 

W-x ray  Solar Photography Experiment (code S70) and deactivation of the LM/ATM 

(code DACT). A s  it is 10 revolutions in length, it w a s  not considered a separate day. 

Rev Crew 1 Crew 2 Crew 3 Rev Crew 1 Crew 2 Crew 3 

1 SEH E HK DACT 

2 SEH DACT DACT 

3 SEH DACT DACT 

4 SEH SEH EHK 

5 SEH SEH DACT 

6 S70 SEH DACT 

7 S70 SEH SEH 

8 S70 DACT SEH 

9 S70 DACT SEH 

10 S70 DACT SEH 

DAY 54 

This day was reserved for EVA. A typical EVA day is given in Table 1-5. 
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Time; Hours, Minutes 

DAY 55 

0000 - 1000 

1000 - 1430 

1430 - 1745 

1745 - 1900 

1900 - 2400 

Table 1-3 

DAYS 55 AND 56 

Activity, Assigned to all 3 Men 

Simultaneous sleep, eat, and hygiene 

S-IVB and AM deactivation 
(a) Secure waste management systems 

(b) Transfer  returnable data to CM 

(c) Service LiOH cannisters, water condensate 
tank and PC02 sensors  in aft portion of AM 

(a) Replace launch covers on ECS package 
(e) Secure electrical power 

(a) DOM epace suits 

(b) Initiate S-NB venting 

(c) Activate CM ECS 

(d) Close aft AM hatch 

(e) Close and lock equalization valve 

( f )  Service suit heat exchanger and cooling systems 
(g) Doff space suits 

Simultaneous eat  and hygiene 

MDA deactivation 

Replace launch and dust covers  

Deactivate electrical  systems 

Transfer  returnable equipment and experiment 

data to the CM 

Replace CSM/MDA probe and drogue assembly 

Replace thermal  and pressure  hatch 

Maneuver and stabilize c luster  in  gravity gradient 
mode 

1-28 
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DAY 56 

0 00 
0000 - 1000 
1000 - 1000 

Simultaneous sleep, eat ,  hygiene 

(a) CSM/MDA separation 

(b) CSM/ recovery area phasing 
(c) Reentry and recovery 
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Rev Crew 1 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 

SEH 
R & R  

Crew 2 

R & R  

R & R  

VHK 

SEH 
SE H 

SEH 

SEH 
SEH 

Rev Crew 1 Crew 2 

1 SEH 
2 SEH 

3 SEH 

4 SEH 

5 SEH 
6 SEH 

7 SEH 

8 

EHK 

VHK 

SE H 
SEH 

SEH 

SEH 

SEH 

SEH 

Table 1-4 
TYPICAL R & R DAY 

Crew 3 Rev 

R & R  

R & R  

EHK 

R & R  

R & R  

VHK 

SEH 
SEH 

9 

10 
11 
12  

13 

14 
15 

Table 1-5 
TYPICAL EVA DAY 

Crew 3 Rev 

EHK 9 

1 0  

VHK 11 

SEH 1 2  

SEH 13 
SEH 14 
SE H 15 
SEH 

C r e w 1  Crew 2 C r e w 3  

R & R  SEH SEH 

EHK SEH SEH 

R & R  R & R  SEH 

R & R  R & R  SEH 
VHK EHK SEH 

Review experiment 
status and plans, to 
be done in the CM 

Crew 1 

VHK 
EHK 

PREP 

PREP 

EVA 

EVA 
POST 

Crew 2 Crew 3 
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1.3 POWER AND DATA 

1.3.1 Data 

A typical 2-day period was taken from each half, and the data vs. revolution graphed 

f o r  30 revolutions. Figure 1-1 is a graph typical of days 7 through 28, and Fig. 1-2 

is a graph typical of days 29 through 53. For all experiment days, the data readout 

capability is 340 m i d d a y  with a ten-station net, 190 m i d d a y  with a four-station net, 
and 78 m i d d a y  with a two-station net. 

1.3.2 Power 

A typical 2-day period was taken from each half of the mission, and the power 

requirements/revolution graphed for  30 revolutions in Figs. 1-3 and 1-4. 

I. 4 UNCITED REFERENCES 

NASA/MFSC Mission Requirement Document, 23 May 1967 

NASA/M FSC , Recommended Flight Assignments of Approved Experiments for  
Missions UP- l /AAP-2  and AAP-3/AAP-4, 10 March 1967 

NASA/MFSC, U P - 2  Design Reference Flight Sequence, 21 June 1967 

NASA/MSC, Reference Flight Plan, AAP-l /UP-2 ,  1 June 1967 

NASA/MSC, AAP-3/AAP-4 Flight Plan, 6 July 1967 

LMSC, Cluster  A Design Reference Manual, 11 March 1967 

LMSC , Final Report for Augmentation Task No. 6 , Man-Machine Engineering and 

Docking Aids, 26 June 1967 

8 
8 
I 
I 
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LMSC-A842318 

Part I1 

CLUSTER A ATTITUDE STABILIZATION REQUIREMENTS 

11.1 INTRODUCTION 

During the AAP-1 and AAP-2 (and possibly AAP-3A) missions, the solar panels on the 

OWS must be pointed at the sun. Because of disturbances such as aerodynamic and 

gravity gradient torques,  the vehicle will not remain pointed at the sun if it is not atti- 
tude controlled. If it does deviate from the sun line (i. e. , pointing at the sun),  then 

a loss of power results that is directly proportional to the cosine of the angle of devia- 

tion. While a control system can limit this deviation from the sun line (and thus reduce 

the power loss) ,  the cost ,  reliability, etc. , of such a control system must be weighed 

against the increase in solar  panels required if the deviation is left uncontrolled. 

If a control system is to be used, then the question arises as to the best system to use. 

One of the more obvious possibilities is the CSM system since it will "be there. 

Before any decision of the best system can be made (assuming one is used), the require- 

ments of the system must be determined as well as the consequences of leaving the 

vehicle uncontrolled. This report is directed primarily to these two problems - uncon- 
trolled motion and control impulse required to counter the disturbances. The report  is 
divided into three main parts.  The first defines the vehicle characteristics and the 
analytical representation used (coordinate system, equations, etc. ) . The second par t  

develops the uncontrolled motion and the control impulse requirements for various con- 

ditions. The third part  considers how these control requirements might be met. 

11.2 STATEMENT OF THE PROBLEM 

During the orbit operations of the AAP-1, AAP-2, and AAP-3, the OWS solar panels 

must be pointed at the sun in order  to collect power, i. e. , the plane of the panels must 

11- 1 
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be normal to the line of sight to the sun. (Herein the notation LOS will be used to 

denote the line-of-sight t o  the sun.)  Any deviation from the LOS results in a collected 
power loss  equal to 1-cos a where cy2 is the angle of deviation. Both gravity 

gradient and aerodynamic torques can be expected to force such deviations. Other 
disturbances a r e  considered negligible compared to  these two. 

2 ’  

Orienting to always face the sun is approximately the same as establishing an  inertially 

fixed attitude. However, the missions a r e  planned to last 28 to 56 days,  and over 
these periods the regression of nodes would lead to  prohibitively large a 2 ’ s  if a truly 

inertial attitude were established. Thus, the regression of nodes may also be viewed as 
a disturbance upon the system although it is a unidirectional disturbance of a precise  

known amount. To compensate for  the regression of nodes will be a requirement of any 

system selected and is thus not considered further herein. 

Solar radiation torques have been estimated to be o rde r s  of magnitude less than the 

aerodynamic and gravity gradient torques and a r e  not considered herein. 

During each orbit , the satellite spends roughly equal t imes in sunlight and in darkness.  * 
Assuming a control system is required,  the problem of loss  of the sun and reacquisi- 

tion each orbit must be considered. A further requirement a r i s e s  at reacquisition 

where the t ime that can be allocated to reacquisition is not currently specified. 

ever ,  the longer the time used in reacquiring the sun the greater  the power loss .  

HOW- 

Insofar as power losses are concerned, rotation about the LOS has no effect and thus 

does not lead directly to any control requirement. However , operation requirements 

are for the vehicle to  operate with its longitudinal axis in the orbit plane. Thus,  some 

control will be required to maintain this orientation in the presence of aerodynamic 
torques. 

*For an orbit altitude of 260 to 250 nm,  the period is on the order  of 94 min. About 
54 min is spent in sunlight and about 40 min in darkness.  
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II .3  BASIC DATA 

11.3.1 Reference Systems 

Z1 ) defined so that Figure 11-1 shows a sun-referenced coordinate system ( X  
Z1 points toward the sun and l ies along the earth-sun line, X1 lies along the radius 

vector at the terminator ,  and Y1 completes the right-handed orthogonal coordinate 

system. Figure 3-1 also shows an orbital coordinate system (Xo , Yo , Z o )  . This sys-  

tem is produced from the sun-referenced axes by a single rotation about the negative 

X1-axis through the sun angle A .  The sun angle is the angle between the earth-sun line 

and the projection of the earth-sun line onto the orbit plane. The true anomaly 

is measured from Zo. 

V Y 1 ’  

A body fixed geometric reference system ( X  , Y , 2 )  is shown in Fig. 11-2. The origin 

of this system lies on the vehicle axis and is located at  station number 966 in. in the 

Saturn IB coordinate system described below. The positive X-axis l ies along the vehicle 

axis in the direction of the CSM, Z is normal to the plane of the solar panels in the 

direction of the sun, and Y completes the right-handed orthogonal coordinate system. 

In t e r m s  of these coordinates, the vehicle C . G. is located at  X = 788 in. , Y = 

-2.94 in.,,  and Z = 4.97 in. The X- , Y- , and Z-axes a r e  defined to be the vehicle 

rol l ,  pitch, and yaw axes,  respectively. 

A second body fixed coordinate system (x  , y , z )  , referred to as the Saturn IF3 Coordi- 

nate System, is also illustrated in Fig. 11-2. The x-axis of the Saturn IB system is  

coincident with the X-axis of the geometric system described above. The y-  and z- 

axes of the Saturn IB system a r e  obtained by rotating the Y and Z geometric axes 

through a positive angle of 135 deg about the X axis. 

Figure II-3 shows how the roll (a ) , pitch 
in t e r m s  of the sun-referenced and geometric coordinate systems. The roll angle is 

defined to be the angle of rotation, about the positive X-axis, of the geometric axes 

( a2 ) , and yaw ( a3 ) angles a r e  defined 
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referenced to the sun-referenced axes when the X -axis and X-axis are coincident. 
Similarly, the pitch and yaw angles are positive rotations about Y and 2 of the 

1 ,  Y1, Z ) axes when Y and Z are coinci- ( X  , Y , Z )  axes referenced to the ( X  

dent with Y1 and Z1, respectively. These angles may be considered to be three-  

axes Euler angles only for the special case in which two of the Euler angles a r e  zero. 

1 

1 

The nominal orientation of the vehicle is that in which the geometric and sun-referenced 

axes a r e  coincident (i.e., a! = CY = CY = 0 ). Any deviation from the sun- 

oriented flight mode is thus reflected in non-zero values of the roll ,  pitch, and yaw 

angles. 

1 2 3  

11.3.2 Orbital Elements 

The vehicle is assumed to be in a circular orbit, having an altitude of 250 nm. 
also assumed that the orbital inclination is 28.5 deg. Because of the regression of 

the nodes between the orbit and ecliptic planes, the sun angle A may vary between 

+52 deg and -52 deg. The rate  of change of A is sufficiently small, however, so that 

A may be regarded a s  constant during any single orbit. 

It i s  

II. 3 .3  Vehicle Data 

The vehicle configuration considered in  this study is shown schematically in  Fig. 11-2. 

It consists of an OWS, solar panels, Instrument Unit (IU) , Spacecraft-LM Adapter 

(SLA), Airlock Module (ALM), Multiple Docking Adapter (MDA), and an Apollo Com- 

mand and Service Module (CSM). 

The weights and inertias a r e  derived from data presented in  Ref. 11-1 and a r e  sum- 
marized below. All  data a r e  referenced to the Saturn IB coordinate system, described 

in  subsection 11.3.1. 
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0 Total Weight 75,580 lb 

0 Center of Gravity x = 1,754.45 in. 

y = 5.59 in. 

z = - 1.43 in. 
0 Moments and Products of Inertia 

2 
= 118,289 Slug-ft 

2 

2 

Jx 
J = 2,254,646 slug-ft 

= 2,519,964 slug-ft Jz n 

Y 

J = - 4,105 slug-ftL 
X y  2 = 13,444 Slug-ft Jxz ‘l 

J = 28 Slug-ft‘ 
Y Z  

0 Principal Inertias 

A 

A 

A 

2 
J1 = J = 118,207 SlUg-ft 

J 2  = J 2.254,653 slug-ft 
= 2,520,039 slug-ft 

2 

2 

XP 

YP 

J3 JZP 

The direction cosine matrix relating the principal axes to the Saturn E3 axes is: 

1 0.99998286 - 0.00170613 0.00559775 

0.00170083 0.99999793 0.00109498 

- 0.00559961 - 0.00108545 0.99998371 

11.4 AERODYNAMIC TORQUES 

11.4. 1 Method of Computation 

The orbital aerodynamic character is t ics  of the given configuration and flight mode 

were obtained by utilzing the resu l t s  of Sentman (Ref. 11-2). These resul ts  a r e  based 

upon the assumption that the flow regime is free molecule. 

arrangement used to calculate the aerodynamic character is t ics  is composed of flat 
plates and cylinders (see Fig.  ll-4). 

The model of the cluster  
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A reflected-to-incident molecular temperature ratio (Tr /Ti  ) of 0.247 and a mole- 

cular speed ratio S of 7.34 were obtained from Ref. 11.3. In addition to these 

parameters,  the results presented here are based on the following assumptions: 

(1) Molecular reflection is completely diffuse. 
(2) T r  is uniform over the body surface. 

(3) The vehicle surface temperature Tw is uniform and equal to 300°K. 

(4) The thermal accommodation coefficient (CY) is unity (i.e., T r  = Tw). 

(5) The dynamic pressure representation, in t e r m s  of orbital position, is 

I 
R 
I 
0 

2 In this expression, 3 . 6  x lb/ft is the mean dynamic pressure for  the given 

flight mode, assuming the A1/A2 flights occur during near  peak solar activity. The 

molecular density varies between a peak value in the day and a minimum value at 
night. From the data presented in Ref. 11.4, the maximum density occurs approxi- 

mately at a 30-deg lead angle from the earth-sun line. This accounts for the 30-deg 

phase shift in the periodic portion of the expression fo r  q . Significant deviations 

from the results presented here may result  if other density representations are used. 

A shading technique is used to compensate for the shielding effect of one part  of the 

vehicle upon another. This method is adequate only when the molecular speed rat io  is 

high. 

11.4.2 Results 

The aerodynamic roll torques (T 

a r e  shown as functions of orbital position and orientation in Figs. 11-5, II-6, and 11-7, 

) , pitching torques (TAy) , and yaw torques (TAz) AX 

respectively. These torques act about the body fixed axes and are referenced to the I 
center of gravity of the cluster arrangement. Each torque component is presented f o r  
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the case of nominal vehicle orientation and sun 

the aerodynamic torques a r e  shown fo r  vehicle 

yaw deviations from the nominal. The torques 

LMSC-A842318 , 
* 

angle equal t o  0 and 30-deg. In addition, 

orientations having 15-deg pitch and 

corresponding to 30-deg roll  e r r o r  
and A = 0-deg a r e  exactly the torques corresponding to  A = 30-deg and nominal 

orientation. In each case,  roll ,  pitch, and yaw e r r o r s  a r e  considered separately. 

The aerodynamic pitch and yaw torques a r e  even and odd functions of A , respectively. 
The roll torques do not exhibit such a character due to  the asymmetry of the solar  

panel locations. Tables of aerodynamic forces corresponding to the various vehicle 
orientations considered above a r e  presented in Appendix A .  

to recalculate the aerodynamic moments if  the vehicle center of gravity location is 

altered. FAX and FAZ a r e  even functions of A whereas FAY is an odd function of A 

These forces may be used 

It should be noted that the moments corresponding to a vehicle orientation having a 
15-deg pitch e r r o r  can be approximately represented by the moments corresponding to  

the nominal orientation with a 15-deg phase shift. A 15-deg yaw e r r o r  has little effect 

upon TAX and TAY but does result  in significant increases  in  TAZ.  Increasing A 

tends to reduce the pitching torque and increase the yaw torque. This trend continues 

until A = 45-deg and then the trend reverses. The magnitude of the resultant moment 

vector for  any e , however, is maximum when h = 0. A change of h does al ter  

the shape of the TAX curve, but does not significantly a l ter  the magnitudes of the roll  

torques. 

t 

Orbital aerodynamic bias torques act about each vehicle axis for all nominal orienta- 
tions. The shift of the maximum dynamic pressure  f rom the projected earth-sun line 

(Zo) is primarily responsible for these torques. Except for small  shadowing effects,  

the C.  P. shift  with respect to the C.  G. location is symmetrical  about Zo during an 

orbit. The slight asymmetry due to  shadowing does not result  in significant bias 

torques. The dynamic pressure ,  however, is asymmetrical  with respect  t o  Zo and 

does result in significant bias torques acting about each vehicle axis,  This is a direct  

consequence of the fact that the dynamic p res su re ,  and hence aerodynamic forces ,  is 
grea te r  f o r  +e  (0 5 et 5 180-deg) (Fig. 11-1) than for -et . Because the aerodynamic t 
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t o  moment coefficients a r e  approximately equal at * e  
This, then, is the primary cause of the orbital aerodynamic bias torques acting on the 

vehicle. 

, a larger  moment acts at  + e t 

The accuracy to which the bias torques may be calculated is directly related to the 

accuracy of the dynamic pressure representation. For the model used in this analysis 
the pitching bias torque is 0.075 ft-lb when h is zero  and the orientation nominal. In 

no case considered does the bias torque exceed 0.1 ft-lb and in all cases  considered, 

the pitching bias torque is grea te r  than the roll  and yaw biases. A l l  biases may be 

reduced by allowing the vehicle t o  have a negative pitch e r r o r  of magnitude no greater  

than the offset angle, f rom Zo , of the maximum dynamic pressure.  

Although these bias torques a r e  small  compared to the oscillatory torques acting on 

the vehicle, their effect upon the vehicle attitude and motion is significant. For  this 

reason,  the choice of the dynamic pressure representation is critical in accurately 

determining the motion resulting from the action of the aerodynamic torques. However, 

the impulse needed to  control these torques is relatively small ,  irrespective of the 

dynamic pressure representation used. 

11.5 GRAVITY TORQUE ANALYSIS 

Equations for the components of the gravity torque expressed in the sun reference 
system are derived in Pa r t  I of Ref. 11.5. They a r e  based on the assumptions that: 

(1) The principal axes of the vehicle deviate f rom the geometric axes by a 
single rotation v (not necessarily small) about the X-axis 

(2) The geometric axes deviate from the sun system axes by small  angles 

The inertia data presented in subsection 11.3 shows that for  the vehicle under considera- 

tion assumption (1) is a good approximation. For  this analysis, i t  is assumed that the 

geometric axes a r e  coincident with the sun reference axes and the effects of misalign- 
ments a r e  discussed at the end of this section. The equations for the gravity torques 

are thus reduced to the following: 
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where 

2 2 

2 2 

1 A l  4 J2 sin v + J cos u - J 3 

A2 4 J cos v + J sin u - 2 3 

A3  e (J2 - J3)  sin u cos v 

J1 

t ce 4 COS e t se 4 sin e 

S A  sin A C h  P cos A 

1 
I 
I 
I 

PI. 3) I 
In Figs. 11-8 through 11-10 the three components a r e  plotted as a function of et with 

A as a parameter. It should be emphasized that the torque profiles presented a r e  

based on the assumption that the geometric axes remain aligned with the sun reference 

axes. If the vehicle is allowed to  deviate significantly f rom the nominal attitude under 

the influence of the disturbing torques, the torque profiles will change. 

I 
I 

Since J2 and J a r e  nearly equal and the X-axis  is constrained to  lie in the orbit 

plane, the gravity torque is nearly normal to the orbit plane. This can be seen by 

letting J2 = J 6 J in Eqs. 

3 

(II. 1)  and QI.2) which results in  3 

TGX = 0 

3 
- - -  (J - J1)cos A sin 2 et TGY 2 

2 
-3n0 

= -  
t (J - J1)  sin A sin 2 0 TGZ 
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For  A = 0 the Y-axis is normal to  the orbit plane and the complete gravity torque 

is given by 

(J - J1) sin 2 et - -  
TGY - 2 

This situation is  illustrated in Fig. 11-9. Figures 11-8 and 11-10 show that TGX and 

TGZ are not identically zero because of the slight difference between J2 and J3 . 
However, their  amplitudes are at least two orders  of magnitude less than TGY . A s  

A varies between its limits of k52-deg the magnitude of the gravity torque is not 

significantly altered, but the components in the body fixed geometric coordinate system 

vary. 

The effects of pitch and roll  misalignment of the geometric axes with respect to the 

sun reference axes can be observed in Figs. 11-8 through 11-10. A constant rol l  e r r o r  

(about the X1-axis) produces the same results as changing the value of A by the value 

of the e r ro r .  A constant pitch e r r o r  (about the Y1-axis) is equivalent to  a phase angle 

to be added to Bt . 
from the noiiiinal orientation data but must be determined f rom the complete equations 
of Ref .  11.4 which allows for  misalignments between the geometric and sun-referenced 

systems. This was done for a yaw e r r o r  of Q = 15-deg for A = 0 and the resul ts  

a r e  plotted in Fig. 11-11. The importance of keeping the X-axis of the vehicle in the 

orbit plane is illustrated in this figure. When the axis is allowed to  drift out of the 
orbit plane, a large noncyclic torque is created which requires the application of a 
large continuous control torque. 

The effect of a yaw e r r o r  (about the Z1-axis) cannot be obtained 

3 

11.6 EQUATIONS O F  MOTION 

In subsections 11.4 and 11.5 it w a s  pointed out that both the gravity torque and the a e r o  

torque a r e  essentially normal to  the orbit plane SO that the most significant deviations 
from the nominal orientation can be expected to Occur in the orbit plane. In addition, 
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expressed in the orbital system, the disturbance torques were found to be only 

functions of the parameter  A so that treatment of a single value of A should 

lead to resul ts  which a r e  generally applicable. Since fo r  A = 0 the orbital axes and 

the sun-referenced axes coincide, the analysis will be based on this case. 

Neglecting the small X and Z torques and approximating the moment of inertia about 

the Y-axis by the average of J2 and J3,  the equation of motion of the vehicle becomes 

where J S (J2 + J3) /2 and TGY and TAY a r e  the Y-components of the gravity and 

aero  torques, respectively. Both TGY and TAY are functions of cu2 as well a s  

time, but if it is assumed that a2 remains small, then TAY and TGY may be 

approximated by the resul ts  obtained in subsections 11.4 and 11.5. The gravity torque 
may thus be written 

TGY = G sin 2 et 

where 

3 4  
G P - (J - J1) = 4 . 8 8  ft-lb 2 

et 
t 

= 52, 

The aero torque was approximated analytically by 

= A sin et + B *AY 

where 

A = 0.676 ft-lb 

B = 0.148 ft-lb 
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This analytical model is based on a 25 percent overestimate of the aerodynamic moment 

a r m ,  increasing the amplitude of the total disturbance torque by approximately 3 per- 

cent. The total disturbance torque, Ty = TAY + TGY , is plotted in Fig. 11-12. 

With  the approximations discussed above, the final form of the differential equation 

for Q! becomes 2 

B A  G 
2 5 5  J bi = - + - sin Slot + - sin not 

The solution to this equation is discussed in subsection 11.7. 

11.7 UNCONTROLLED MOTION 

In subsection 11.6, the differential equation of motion of a simplified system was 
derived. The form is such that it can be integrated directly leading to  

PI. 4) 

where 

B/Q J 
0 

A/QoJ 

G/2QoJ 

B/2QoJ 2 

G/4SloJ 2 

A/Q:J 

= 50.5321 x deg/sec/deg 

= 13.1950 x deg/sec 

= 47.6806 x deg/sec 

= 3.7880 x deg/sec2 

= 11.3346 deg 

= 20.4790 deg 
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and C1 and C2 are constants of integration. In Figs. 11-13 and 11-14, dr2 and a2 
a r e  plotted vs. 6t for  the special case of C = c2 = 0. 1 

Figure 11-14 shows that the aerodynamic bias torque if uncontrolled, leads to  a pitch 

angle of 50-deg in one orbit. While the consequences of reaching a 50-deg angle 

would probably require a modification of the aerodynamic characteristics it is none- 

theless clear that this bias torque may be the most significant disturbance requiring 

c ontr 01. 

The next notable feature is the interaction of the gravity gradient and aerodynamic 

torques. Although the amplitude of the cyclic portion of the ae ro  torque is less  than 
15 percent of the gravity torque, the amplitude of the corresponding oscillation is 

grea te r  than 50 percent of that due to  gravity because the period of the ae ro  torque is 
twice as long as that of the gravity torque. The net result  is a 30-deg maximum pitch 

angle (ignoring the contribution of the aerodynamic bias torque). 

If the aerodynamic bias torque is ignored, then Eq. 

periodic, if C1 = 0. 

angle. We assume hereafter that C1 = 0. 

(II. 5) shows that the motion is 
For  any other value there will be a monotonically increasing 

If the motion is uncontrolled, then the energy actually acquired during each orbit is 
given by Eq. (II. 6). 

E = E 1 cos cu2 (t) dt 

where 

E = power collected for a2 = 0-deg 

a2 (t) = deviation from LOS (e.g., see Fig. 11-14) 
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Ignoring the effects of the aerodynamic bias, the motion is shown by Fig. 11-14 to be 

symmetric about the orbit. Integrating graphically* over 90 deg of the daylight portion 

of the orbit gives a value for the integral of 

E/E = 1310 sec (11-7) 

If the attitude ( a 2 )  had been zero throughout, i. e. , had there been no deviation from 

LOS, then the value of the integral would have been 1410 sec (a quarter  of the orbit 

period). Then, the energy loss is 

Emax - Eactual - - 1410 - 1310 = 7.1% 
1410 E max 

(11- 8) 

If a control system were to hold the vehicle to a maximum a2 of *20  deg, but other- 

wise not affect its motion, then the integral of Eq. (11-6) has the value of 

E/E = 1344 sec  

In this case the energy loss is 

Emax 

= h20 deg)  (a-9) (for &2rnax 

(11-10) - 1410 - 1344 = 4.7% - 
1410 

While a control system with a 20 deg deadband would doubtless alter the motion signifi- 

cantly from that shown in Fig. 12-14, i t  is nonetheless clear that only modest reductions 

in  the energy loss can be expected to be achieved through the use of a control system 
to limit the oscillatory pitch motion. 

I 
1 

* I 
I 
I 
I 
8 
I 
1 
I 
1 
1 
I 
I 
I 

+ 

*See Appendix B for details of the integration. I 
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1 
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II. 8 IMPULSE REQUIREMENTS FOR PERFECT CONTROL 

When perfect control is applied to  the vehicle, the body fixed geometric axes remain 

aligned with the sun-reference system at all times. Under these conditions, the 

disturbance torques calculated in subsectionsII. 4 and II. 5 a r e  exact. In order  to 

maintain perfect control, it is necessary to  apply control torques continuously that a r e  

equal and opposite to  the disturbance torques. The required torque impulse per orbit 

is given by the integral of the absolute value of the disturbance torque over one orbit 

period. Ignoring the aerodynamic bias torque and assuming C1 = 0 the control impulse 

for one orbit is 

'control = / (G  sin 2Q0t + A sin no t )  d t  (II. 11) 

During a quarter  of the orbit, the aerodynamic torques aid the gravity-gradient torques 

and oppose them in the succeeding quarter. In this fashion the impulse contribution of 

the aerodynamic torques is cancelled out and Eq. (II. 11) reduces to the time integral 
of the gravity gradient torques. 

cos 2Q0t 

'control - 
2n0 

4G 
- - - 2Qo = 19,400 ft-lb-sec/orbit 

IT 
(11-12) 

If the control force is located in the OWS engine a rea  (Sta. 1225 has been used) a control 

moment a r m  of 50 ft is realized giving a control impulse required of 

= 388 lb-sec/orbit IC 

For a period of 94 min there a r e  15 .3  orbits per day giving - 

= 388 x 15.3 = 5950 lb-sec/day IC 

(II-13) 

(II. 14) 
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To estimate a propellant weight we assume a specific impulse of 276 lb -sec/lbm f 
(CSM RCS) 

For a 28-day m,;sion this leads to a propel 

21. 6 lb/day 

ant weight of 60, 

(II. 15) 

. While cont,mous 

control is not required, this value provides a limiting case against which more  realistic 
situations may be evaluated. 

In subsections 11.4 and II. 5 it was pointed out that the magnitude of the disturbance 

torque vector is not a strong function of the parameter A .  

necessary to cancel the disturbance torque, however, does depend on A because the 

body-fixed thrusters must cancel the components of the disturbance torque individually. 

Consequently, i f  the thrusters  are aligned with the vehicle geometric axes, the impulse 

required to cancel the disturbance for A = 45 deg will be approximately J 2 t imes  

that required for A = 0 .  

The control torque impulse 

11.9 DISCONTINUOUS CONTROL 

In subsection 11.7 it w a s  shown that without the bias in the ae ro  torque, the uncontrolled 
pitch motion is cyclic with a maximum amplitude of approximately 29 deg. 

band grea te r  than 29 deg, therefore,  it is necessary to supply only enough control 

impulse to compensate for the ae ro  bias. For  smaller dead bands additional impulse 

will be required. The impulse required to limit the maximum amplitude of the oscil-  

lation is strongly dependent on the manner in which it is applied. I€ a continuous 

control torque cancelling the cyclic ae ro  torque were applied, the maximum amplitude 

would be reduced by approximately 8 deg at a cost  in  impulse of 1.4 x 10 ft-lb-sec. 

To effect a similar reduction in maximum amplitude by attenuating the gravity torque 

response would require approximately 8/20 of the total  gravity impulse or 3 x 10 

ft -1b -sec. 

For a dead 

6 

6 

In reality the control impulse will probably be applied in a discontinuous fashion with 

the control system actuated by an attitude error sensing device. In addition, if  a sun 
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sensor  is used fo r  actuation, control can be applied only during the daylight portion of 

the orbit. In order  to assess the behavior of such a system, a model with the following 

characterist ics has been analyzed. 

(1) Impulses I1 and I2 a r e  applied in opposition to the disturbance torques in 
the first and fourth quadrants of et , respectively. 

(2) I is la rger  than I2 by the magnitude of the aero  bias impulse of a single 
orbit period so that the total impulse (algebraic) applied to the vehicle over 

one orbit is zero. 

(3) The initial conditions are selected so that cy2 and &, are the same at the 
beginning and the end of the orbit. 

1 

The system is illustrated schematically in Fig. 11-15. The resulting equation for a2 
during the f i r s t  orbit  period is 

L I 

+ - (et - a o t 2 )  u ( e t  - G? 0 t 2 ) + - Qo % + c 2  
JaO 

where U is the unit s tep  function occurring at the zero value of its argument. Con- 

dition (2) leads to  

I1 - I2 = 2~ B/Qo 

Assuming that the vehicle is initially aligned ( C2 = 0 ) ,  condition (3) leads to  
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These equations have been solved for  several values of I2 for the special case of 
G o  tl = 7~/4 and Q0 t2 = 77r/4 and the results are plotted in Fig. 11-16. The 

parameter k is the value of I2 normalized with the gravity impulse by the following 

equation: 

I2 
498 ft-lb-sec k 12/(G/G 0 ) = 

The trajectories in  Fig. 11-16 indicate that for  the assumed control system the smallest  

value of maximum amplitude is approximately 21-deg which occurs for  k = 0.1. 

A s  k increases above that value, the maximum amplitude increases again. The 

important effect, however, is that for  k > 0.1, the maximum amplitudes occur during 
the dark portion of the orbit. The maximum values of cy attained during the daylight 

portion of the orbit continue t o  decrease until cr2 reaches a value of 7.8-deg for 

k = 0.4. Since the primary purpose of the attitude control system is to  keep the solar  

panels pointed at the sun, only the daylight portion of the orbit is of interest. A plot 

of impulse requirement vs. maximum daylight cr2 is presented in Fig. 11-17. 

2 

11.10 ACQUISITION 

On entering the earth’s shadow the solar reference is lost and must be reacquired on 

leaving the shadow. Since no solar energy can be acquired in the shadow there is no 

reason to attempt to  hold a specified attitude unless the propellant needed to  reacquire 
the sun should exceed that needed to hold a specified attitude. 

Assuming that the vehicle is at the maximum possible attitude e r r o r  of 30-deg from 

the LOS, the control impulse to reacquire the sun - ignoring the disturbing 

torques - is 
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\ CONTINUOUS CONTROL \ CONTINUOUS CONTROL 

OF ALL DISTURBANCE 
TORQUES AERODYNAMIC BIAS 

OF GRAVITY AND 

TORQUES 

CONTINUOUS 
CONTROL OF / TOTAL 
AERODYNAMIC 

CONTINUOUS CONTROL 
O F  AERODYNAMIC 
BIAS TORQUE ONLY 

IMPULSIVE 
CONTROL 

I I I I I 
0 5 1 0  15 20 25 30 

MAXIMUM DAYLIGHT PITCH AMPLITUDE (deg) 

Fig. 11-17 Torque Impulse Requirements vs. Maximum Daylight Pitch Amplitude 
for Several Types of Control (28-Day Mission) 
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= initial e r r o r  30-deg 

= vehicle moment of inertia,  2 . 5  x 10 slug-ft 
= time to reacquire and also time of control action 

a20 6 2 
J2 
t 
1 = control moment a r m ,  50 f t  

F = control force 

Our model assumes that the vehicle is accelerated through half of O0 and 

decelerated through the second half to stop aligned to the LOS to  the sun 
with no e r r o r  and no pitch rate.  For  the given values and for t = 5 min 

(300 sec). 

lb-sec 
0 Ft = 2664 - 

day 

For a specific impulse of 276 sec (because the firing is continuous no degrada- 

tion of specific impulse is taken) we get a propellant weight of 

2664 - 9.67 lb/day o w  = - = - -  
276 

Ft 

Isp 

For a 28-day mission this leads to a propellant weight of 270 lb. If the time 

of acquisition is raised to 10 min, this weight drops by half to 135 lb. 

An estimate may be made of the collected energy loss  in this operation by 

assuming perfect control following reacquisition and an energy loss proportional 
to the cos o / 2  during the acquisition period. 20 

cy 

/E - - 1 - t (1 - cos+\ 55 Eactual max 

where T 

t 

t + T = time in sunlight (min) 

= time when cy2 = 0 

= time when cy2 f 0 

For t = 10 min and cy2o = 30-deg 
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(1 - COS 15") = 0.9936 - I - -  - 10 
Eactual'Emax 55 

Thus, a 10-min reacquisition period will lead t o  an energy loss of well 

under 1 percent. 

11.11 ATTITUDE DETERMINATION 0 
To meet the operational requirements of aligning the solar panels normal to the LOS 

requires determination of the LOS. This need is most directly met with a sun sensor. 

The sun sensor will establish, in t e rms  of pitch and roll angles, the LOS to the sun. 
Rotations in yaw, i.e., about the LOS, do not affect the energy collected by the solar 

panels. However, rotations in yaw will, in general, lead to increases in both the 

gravity gradient and aerodynamic torques. If unopposed they could conceivably tumble 

the vehicle. Thus, yaw rotations must be controlled although they do not directly 

affect the solar  energy collected. 

8 
E 

To measure yaw angles two basic means are available - gyroscopic and star sightings 

(basically geometric). If the CM platform is operative, it can directly supply the yaw 
angle; if not operative, a separate gyroscope can be used. To compensate f o r  gyro 

drift ,  they can be realigned each orbit with data supplied by star sightings. Star sight- 

ings can be used directly in conjunction with an ephemeris, orbit elements, and a 
computer (presumably the CM computer). This last approach is covered in  greater  

detail in Ref. 11.6. 

11.12 CONTROL SYSTEMS 

The analysis of the previous sections has established the impulse requirements t o  

l imit  the amplitude of the deviation of the solar  panels from the LOS for different modes 
of control. I t  has also made estimates of the collected solar energy loss for different 

deviations. These impulse requirements may be met in two basic ways : 

0 Aerodynamic bias control 
0 Amplitude control 
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The most basic consideration in  selecting a particular system is weight. Figure 11-16 

shows the impulse required to  constrain a to various amplitudes for both continuous 

and discontinuous control. From this figure we construct Fig. 11-18 where the 
impulse is converted to  control propellant weight (assuming an RCS) using a control 

moment a r m  of 50-ft and a specific impulse of 200 sec. If cold gas were to  be con- 
sidered, a specific impulse of 70 sec would be used and the weight figures may be 

scaled up accordingly. The 50-ft moment a r m  implies an auxiliary RCS located in the 

OWS engine area.  If the CSM RCS is used, the moment a r m i s  30 f t  and the specific 
impulse is 276, and the weights of Fig. 11-18 must be scaled up accordingly. 

2 

11.12.1 Aerodynamic Bias Control 

If only the aerodynamic bias is controlled, a control propellant weight of about 30 lb 

is required for a 28-day mission (see Fig. 11-18). In this mode, the pitch and rol l  

angles will be measured directly with a sun sensor and when they exceed *30-deg the 

CSM RCS wil l  be activated. The activation may be done either automatically or 
manually. If done manually, a display must be made for  the crew who will  have to  

take action once about every 70 min. (Figure 11-14 shows it takes about 70 min fo r  

CY to reach 30-deg.) Operated in this mode the collected energy loss is 7 percent of 

the theoretical maximum that could be collected. An elementary block diagram of the 

system is shown in Fig. 11-19 where the deadband is to be understood as set at +30-deg. 

2 

11.12.2 Amplitude Control 

Strictly speaking this system is the same as one for aerodynamic bias control shown 
in Fig. 11-19. The difference lies in the magnitude of the amplitude of a2 that is 
permitted. If a2 is limited to *30-deg, Fig. 11-18 shows a control propellant weight 

of 75-lb is required for a 28-day mission. Operated in this mode, the collected energy 

loss is about 5 percent of the theoretical maximum that could be collected. 

If continuous control is attempted in order to  hold cy2 to, or near ,  zero,  a control 
propellant weight of 790-lb is required for  a 28-day mission. Allowing for  inerts (if an  
auxiliary s y s t e m  were used) the flight weight would be on the order  of 1100 lb. In this 
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CONTINUOUS CONTINUOUS 
CONTROL OF ALL CONTROL OF 
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Fig. 11-18 Fuel Requirements vs. Maximum Daylight Pitch Amplitude for Several 
Types of Control (28-Day Mission) 
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mode of operation, the collected energy loss would be essentially zero. It should be 
noted that continuous control here means not only that the disturbance torques are 
continuously opposed but that this is done on the dark a s  well as the daylight side of 

the orbit. Since energy loss  as such is not meaningful on the dark side of the orbit, 

the control propellant weight could be materially reduced by not controlling there. 

This case has not been analyzed, and to do so one must reconsider the biases and re- 
acquisition, but this would clearly lead to a control propellant weight on the order  of 

400 to 500 lb  and flight weights of 600 to  700 lb  rather than the 800-lb and 1100-lb 

weights noted above. 

11.13 CONCLUSIONS AND RECOMMENDATIONS 

The most notable conclusions of the analysis a r e  as follows: 

Aerodynamic bias torques exist which, if uncontrolled, can lead to pitch 

angles of 50-deg within one orbit. 

The aerodynamic and gravity-gradient torques interact to  produce a pitch 

angle 50 percent grea te r  than that due to gravity gradient alone, although the 

aerodynamic torques a r e  12 percent of the gravity gradient torques. 

If only the aerodynamic bias torques a r e  controlled, the collected energy loss  

is only 7 percent of the theoretical maximum that could be collected. 

Controlling the pitch angle t o  reduce its maximum to  k20-deg from +30-deg 

(controlling only the bias torques) reduces the energy loss from 7 to 5 percent. 

Controlling the aerodynamic bias torques requires about 30-lb of control 

propellant (I = 200, moment a r m  = 50-ft) for  a 28-day mission. 
Controlling the pitch angle to a maximum of *20-deg requires  about 75 lb  of 

control propellant for a 28-day mission. 

Controlling the pitch angle continuously t o  reduce the energy loss to  zero  

requires  800 lb of control propellant if controlled through the orbit, and about 

400 to 500 lb if controlled only on the daylight side of the orbit, both for a 
28-day mission. 

SP 
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The recommendations are as follows: 

Control only the aerodynamic biases and pitch angle using the CSM RCS. 

This will require 30 lb of RCS propellant. 

0 If the 5 percent energy loss associated with the previous item is not accept- 

able, then conduct a more extensive analysis t o  determine the control weight 

associated with a given energy loss to  aid in selecting an acceptable operating 

point. 
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11.15 NOMENCLATURE 

Tr 

Ti 

TW 

S 

CY 

t 

IC 

W 

E 
P 

F 

Q 

sp  I 

ref le c te d molecular temperature 

incident molecular temperature 

vehicle surface temperature 

molecular speed ratio 

thermal accommodation coefficient 

true anomoly 

orbit-referenced axes 

sun-referenced axes 

geometric body-fixed axes 

Saturn IB body-fixed axes 

aerodynamic force components in geometric body-fixed 
coordinates 

roll ,  pitch, and yaw angles about positive X- ,  Y-,  and Z-axes, 
respectively 

aerodynamic rol l ,  pitch, and yaw torques referenced to vehicle 
C .  G. and geometric body-fixed axes 

time 

control impulse 

propellant weight per day 

energy from solar a r rays  

control force 

control moment arm 

specific impulse 
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moments of inertia for Saturn IB axes (for C. G. ) 

products of inertia for Saturn IB axes (for C. G. ) 

principal moments of inertia for C .  G. 

principal moments of inertia for C. G. 

average of two maximum principal moments of inertia 

angle of rotation from geometric to principal axes (about X) 

components of gravity torque in geometric system 

mean orbital ra te  

angle between earth-sun line and orbital plane 

amplitude of cyclic portion of aerodynamic torque model 

magnitude of constant portion (bias) of aerodynamic 
torque model 

amplitude of gravity torque model 

constants of integration 

torque impulses used in discontinuous control 

t imes of application of impulses in discontinuous control 

scaled magnitude of impulses in discontinuous control 
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Appendix B 

The solar  energy is given by 

E = E -/ Cos a2 (t) dt 

where 

E = power collected with solar panels normal t o  the LOS 

a2 (t) = is given by Fig. 11-14 

For graphical integration 

where 

A52 t = increment in orbit angle, taken here  as 5-deg 

= orbit ra te  

= average value of (Y in the AS2 t interval 

0 

QO 

2 2 0 
a! 

avg 

A t  250 mi, the period is about 94 min giving 

R ad/sec - 2n = 7r - 
'0 94 x 60 2820 
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Using Eq. (B. 3) , (B. 2)  is evaluated in Table B-1. Equation (B. 2)  is expressed 

in  t imes of seconds and may be interpreted as giving the equivalent time of exposure 

of the full panels, undeflected, from the LOS. 

For example, if Q! 

possible to collect is collected and the equivalent time is one-fourth of the orbit period, 

i. e . ,  1410 sec. If the panels were deflected from the LOS by 45-deg throughout the 

same period the equivalent time of exposure would simply be 

were zero through a quarter of the orbit, the maximum energy 2 

7 

4 
E/k = / Cos 45" dt = 0.707 = 996 sec (B. 4) 

J 
0 

In this example the energy loss is 30 percent. From Table B-1 the equivalent time 
is found to  be 1310 sec and the energy loss is 

1410 - 1310 
1410 x loa, = 7.1% Energy loss = 

If a control system were to limit CY 

then the energy loss is computed using the data of Table B-1 for  the periods when 

cy 

to  rt20-deg but otherwise not affect the motion 2 

20-deg and u2 = 20-deg for the remaining time. 2 -  

where Rotl  and Rot2 a r e  the orbit angles where a2 > 20-deg 
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From Table B-1 we evaluate Eq. (B.6) as 

0'59393 + 0.94 x - - = 531 + 810 = 1341 sec  E/E = ~ 28n20 (55753) 

The energy loss is 
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Part III 
AAP SOLAR ARRAY SYSTEM POWER STUDY 

III.1 SUMMARY 

This study was performed to determine the power available fromthe AAP Solar Array 

System mounted on the S-IVB OWS. Results w e r e  obtained for the solar a r rays  in the 

sun-oriented mode as w e l l  as for the arrays in various locations in the gravity- 

gradient (storage) mode. The maximum total power available during one orbit was 

found to be 10,490 w-hr. 

Solar Array Power Program 

Solar a r r a y  power is dependent upon the following: 

0 Vehicle configuration parameters 

0 Thermodynamic parameters 

0 Space geometric variables 

0 Temporal variables 

The primary temporal variable is the degradation of performance with time of the 

solar  a r r a y  due to the effect of the space environment. This variable is independent 

of the other parameters.  

The space geometric variables are the vehicle's position with respect to the sun and 

ear th .  They depend upon the orbit inclination; launch date, time, and site; and orbit 
altitude and eccentricity. However, for the AAP mission, the space geometry variables 

also depend upon the astronaut controlling the vehicle to make it sun-oriented o r  to 

place in a gravity-gradient storage mode. 
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The main thermodynamic parameters  are the a r r ay ' s  solar  absorptivity ( a s  ) and 

emissivity ( E )  both on the cell side and backside, its thermal capacity, and its orien- 

tation to the sun, vehicle, and ear th .  These parameters  are greatly dependent a r r a y  
design and space geometry. 

The pr imary vehicle configuration parameters  are the position of the solar  a r r ays  on 

the vehicle and the orientation of the vehicle with respect to its orbital path. 

For  a given solar a r r a y  a r e a  in a constant solar flux, the power output of the a r r a y  

equals the product of the variables e (solar cell  efficiency) and E 

The effectivity eSa is the cosine of the angle between the earth-sun line and the nor- 

nial to the solar cell  (i. e. , a surface perpendicular to the sun has an effectivity of one 

and is dependent on the space geometry and vehicle configuration. The efficiency e of 

a solar  cell is dependent on the temperature and temporal effects. A typical efficiency 

curve is shown in Fig. ILI- 1. Note that efficiency decreases  as temperature increases .  

From this i t  can be concluded that a sun-oriented solar  a r r a y  at 80°F o r  below would 

supply maximum power. However, the solar a r r a y ' s  temperature is also a function 

of the a r r ay ' s  effectivity, with the temperature increasing as the effectivity increases .  

(a r ray  effectivity). sa  

111.2 METIIOD OF ANALYSIS 

To obtain the solar a r r ay  power, the computer program* was modified. This computer 

program is versatile in that i t  can be used fo r  up to 64 separate so la r  a r ray  panels on a 
satellite i n  a circular orbit. The inputs to the program a r e  the space geometry vari-  

ables ,  the vehicle and solar  a r r ay  configurations, the thermodynamic properties,  and 
the solar  a r r a y  efficiency. 

The space geometry variables are input with respect  to a right-handed geocentric 

inertial system, with one axis directed toward the vernal equinox, the third axis di- 

rccted toward the north pole, and the second axis chosen to complete the t r iad.  The 

*Lockheed Missiles & Space C o . ,  "Program 461 Solar Array Power Study. ' I  

LMSC-A319781. Sunnyvale, Cal i f . ,  25 Feb 1963 
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satellite moves in a plane at some inclination to the equatorial plane. The input con- 
sists of the initial position of the sun, initial right ascension of the ascending mode, 

initial position of the satellite in the orbit plane, inclination of the orbit plane, angular 

velocity of the sun and sntellite, and the radius of the orbit. With this information the 

vehicle position in the orbit  can be determined as well as the earth-shadow points. 

The configuration input consists of describing the vehicle and solar  a r r ays  with res- 
pect to a vehicle coordinate system. The vehicle can be described by either one o r  

two right circular cylinders. The solar  a r r ays  are described as rectangular plane 
sections located at specified points and at specified rotations from the vehicle's axis. 

There are 110 restrictions on the a r r ay  positions. 

The thermodynamic properties that are input are the cell side and back side solar  

absorptivity and emissivity, the solar constant, the thermal capacity, the thermal 

radiation to the vehicle (assumed to be a constant over the orbit) ,  an  earthshine vari- 

able,  and the albedo variable. 

ILI.3 RESULTS 

Initial studies were made wi th  ci a r rays  having 63 panels and 2 a r rays  having 44. Each 

ar ray  was described by one temperature calculation method. Analyses were per- 

formed by beta angles of 0 deg (noon orbit) and 52 deg for the sun-oriented mode and 
0 deg h25 and h52 deg for two gravity-gradient modes. [The beta angle is defined a s  

the acute angle between the earth-sun line and orbit  plane, and is positive if an in- 

crease in orbit position angle produces a counterclockwise motion when the orbit  
plane is viewed from the sun.] 

In the sun-oriented cases ,  all  the solar a r r ays  are normal to the sun. 
gradient cases ,  the solar a r r ays  are oriented as shown in Figs. III-2 and LII-3. In 
Fig. 111-2 the middle solar  a r r ays  are in the plane of motion so that in a noon orbit  

they would always be parallel to the sun's rays.  

In the gravity- 

In minus beta angles, they would 
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receive solar energy on the cell side, while in positive beta angles the back side would 

receive solar energy. The end arrays were rotated h65 deg from the other a r rays  in 
a position to receive energy even when the other a r r a y s  were parallel to the sun's rays,  

Fig. III-3 shows the a r rays  on the *Y sides of the vehicle with the end a r r a y s  rotated 

at the same  angles as in Fig. 111-2. 

for  beta angles of 0 deg, ~ 2 5  deg, and A52 deg were made, while the orientation of 

Fig. 111-3, only runs of 0 deg, +25 deg and +52 deg were made since the minus beta 

results are the same  as the plus beta results. 

For the orientation of Fig. 111-2 computer runs 

The back side of the a r r a y s  were assumed white (solar absorptivity = 0 . 2 2 ,  emissivity 
= 0.90) and the solar cell cover glass w a s  assumed to have a solar absorptivity of 

0 .76 and emissivity of 0.79. (These values were used on previous programs and the 

predictions matched the flight data quite well). The total power for the various cases 
is given in  Table 111-1. Figures IU-4 through III-12 show the orbital power variation 
and Fig. Lu-13 shows the p = 52 deg sun-oriented temperature variation. 

Later studies were performed with each of the all eight solar a r rays  having 84 panels. 

Each solar  a r r a y  was divided into two temperature nodes, one close to the vehicle and 

one away from the vehicles. By dividing each a r r a y  into two nodes, the array 's  temper- 

ature w a s  obtained more  accurately than before since the effect of shading w a s  taken 
over a smaller area and the difference in the radiation heat transfer from the vehicle 

to the different par ts  of the a r r a y  could be considered. (The same thermal coefficients 

assumed in  the initial studies were used.) The results are shown in Table 111-2 and 

Fig. UI-14 through III-24. 

The resul ts  show that the maximum power is obtained in the p = 52 deg sun-oriented 

mode in which the a r r a y s  are in  the sun for the longest period of time. In this mode, 

the increase of panels brought a proportional increase in power. 

With the a r r a y s  on the *Y sides of the vehicle in the gravity-gradient mode, the maxi- 
mum power is in the p = 0 deg orbit and decreases as the beta angie decreases.  For  
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this condition, the la rger  a r r ays  have more  than a proportional increase in power since 

the la rger  a r r ays  have more panels further from the vehicle that are not shaded. 

With the a r r a y s  on the *Z sides ,  the maximum power was in  the p = -52 deg orbit. 

The power decreased as the beta angle increased until it reached a minimum at 
P = 0 deg and slowly increased as the beta angle increased. 

variation in power with beta angle is that the middle a r r a y s  receive more energy as 
the beta angle decreases away from p = 0. As with the a r r a y s  on the *Y sides ,  the 

84 panel a r r ays  had more than a proportional increase in power due to lower temper- 

a tures  at the outside end of the a r r ays .  The maximum power for  the gravity-gradient 
mode was with the a r r a y s  on the -+Y sides and p = 52  deg while the minimum power 

was  also for the a r r ays  on the *Y sides and for p = 0 deg. 

The reason for  the large 

Table 111-1 

TOTAL SOLAR ARRAY POWER, 63- AND 44- PANEL ARRAYS 

Orient at ion 

Sun 

Sun 

Gravity Gradient, *Y Sides 

Gravity Gradient, kY Sides 

Gravity Gradient, &Y Sides 
Gravity Gradient, 5 Z  Sides 

Gravity Gradient, + Z  Sides 

Gravity Gradient, * Z  Sides 

Gravity Gradient, 5 Z  Sides 

Gravity Gradient, * Z  Sides 

Figure 
Number 

111-4 

111-4 

III- 5 

111- 6 

111- 7 

111- 8 

111- 9 

111- 10 

111- 11 

111- 12  

111- 8 
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Angle 

0 

52 

0 

25 

52 

0 

+25 

+52 

- 25 

- 52 

SPACE 

Total Power 
Generated 

Per Orbit (kwh) 

6 . 7 0  

7 . 2 8  

2 . 2 3  

1 . 8 7  

1 . 0 8  
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1 . 6 6  

3 . 7 6  
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Table III-2 
TOTAL SOLAR ARRAY POWER, 

Orientation 

SUn 

SUn 

Gravity Gradient, *Y Sides 

Gravity Gradient, iY Sides 

Gravity Graident, iY Sides 

Gravity Gradient, iZ Sides 

Gravity Gradient, iZ Sides 

Gravity Gradient, iZ Sides 

Gravity Gradient, * Z  Sides 

Gravity Gradient, * Z  Sides 

Figure 
Number 

14 

14 

15 

16 

17 

18 

19 

20 

21 

22 
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84-PANEL ARRAYS 

Total Power 
Beta Generated 
Angle Per Orbit (kwh) 

0 

52 

0 

25 

52 

0 

+25 

+25 

-25 

-52 

9.63 

10.49 

3.39 

2.86 

1.72 

0.78 

0.99 

1.05 

2.65 

5.32 
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